Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hai-Qiang Wu, ${ }^{\text {a }}$ Jin-Lin Zhou, ${ }^{\text {a }}$
Zhi-Shu Huang, ${ }^{\text {b }}$ Lian-Quan Gu ${ }^{\text {b }}$ and Seik Weng $\mathbf{N g}^{\text {c* }}$
${ }^{\text {a School of Chemistry and Chemical Engineering, }}$ Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, ${ }^{\mathbf{b}}$ School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and ${ }^{\text {c }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.040$
$w R$ factor $=0.128$
Data-to-parameter ratio $=16.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

3-[2-(N,N-Diethylamino)glyoxyloyl]-1H-indol-4-yl acetate monohydrate

In the crystal structure of the title compound, $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, the substituted indole molecule forms a hydrogen bond to the water molecule. The water molecule in turn interacts with the carbonyl O atom of the acetoxy unit of an adjacent indole molecule and also with the O atom of the acetamide unit of another indole molecule, giving rise to a hydrogen-bonded helical chain structure that runs along the b axis of the monoclinic unit cell.

Comment

3-[2-(N, N-Diethylamino)glyoxyloyl]-1 H-indol-4-yl acetate is a reagent used in the synthesis of 3-[2-(diethylamino)ethyl]-4indolol (4-HO-DET), a compound belonging to the 3-(2aminoethyl)indole structural class of psychoactive drugs (Shulgin \& Shulgin, 1997). 4-HO-DET will be converted into other compounds, in an extension of in vivo and in vitro studies of the structure-activity relationships of such compounds (An et al., 2001; Bu et al., 2002). 3-[2-(N,N-Diethylamino)glyoxyloyl]-1 H -indol-4-yl acetate exists as the monohydrate, (I) (Fig. 1), the crystal structure of which is presented here.

(I)

The ketonic fragment of (I) (C9/C11/C12/O3) is approximately coplanar with the indole system [dihedral angle $\left.17.5(1)^{\circ}\right]$, but almost perpendicular to the amide fragment [C11/C12/N2/O4; dihedral angle $82.8(1)^{\circ}$]. The large twist is probably necessary to avoid crowding, but it appears to lengthen the $\mathrm{C} 11-\mathrm{C} 12$ bond somewhat.

The indole molecule forms a hydrogen bond to the water molecule, which in turn interacts with the carbonyl O atom of the acetoxy unit of an adjacent indole molecule and the O atom of the acetamide unit of another indole molecule (Table 2). These hydrogen bonds give rise to a helical chain that runs along the b axis of the monoclinic unit cell.

Experimental

The title compound was synthesized from 4-acetoxyindole (synthesized from 4-hydroxyindole and acetic anhydride), oxalyl chloride

Received 12 January 2004 Accepted 28 January 2004 Online 7 February 2004
and diethylamine, using the procedure of Shulgin \& Shulgin (1997), and was obtained as colourless crystals by recrystallization from ether. The literature records the compound as being anhydrous.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=320.34$
Monoclinic, $P 2_{1} / a$
$a=12.646$ (2) \AA
$b=10.518$ (1) \AA
$c=12.904$ (2) A
$\beta=98.703(2)^{\circ}$
$V=1696.7(4) \AA^{3}$
$Z=4$
$D_{x}=1.254 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 931
\quad reflections
$\theta=2.5-26.8^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Block, colourless
$0.50 \times 0.38 \times 0.36 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: none
9454 measured reflections
3695 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0694 P)^{2}\right. \\
& \quad+0.3054 P] \\
& \quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.30 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

> 2880 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.012$
> $\theta_{\max }=27.0^{\circ}$
> $h=-16 \rightarrow 16$
> $k=-11 \rightarrow 13$
> $l=-10 \rightarrow 16$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.128$
$S=1.02$
3695 reflections
221 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 1

A view of the molecular structure of (I), showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii. The dashed line indicates a hydrogen bond.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1N $\cdots \mathrm{O} 1 W$	$0.86(1)$	$1.91(1)$	$2.743(2)$	$161(2)$
O1W-H1W1 \cdots O $^{\mathrm{i}}$	$0.85(1)$	$1.99(1)$	$2.841(2)$	$175(2)$
O1 $W-\mathrm{H} 1 W 2 \cdots$ O $^{\mathrm{ii}}$	$0.85(1)$	$1.98(1)$	$2.810(2)$	$165(2)$

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $\frac{1}{2}-x, y-\frac{1}{2}, 1-z$.
H atoms on C atoms were placed at calculated positions in a riding model approximation, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 for aromatic H atoms, 0.96 for methyl H atoms and $0.97 \AA$ for methylene H atoms, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The amine and water H atoms were located and refined with $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ distance restraints of 0.85 (1) Å.

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China, the Natural Science Foundation of Guangdong Province, Sun Yat-Sen University and the University of Malaya for supporting this work.

References

An, L.-K., Bu, X.-Z., Wu, H.-Q., Guo, X.-D., Ma, L. \& Gu, L.-Q. (2001). Tetrahedron Lett. 42, 5737-5740.
Bruker (1999). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bu, X.-Z., Huang, Z.-S., Huang, Z.-M., Ma, L., Xiao, G.-W. \& Gu, L.-Q. (2002). Tetrahedron, 58, 10315-10321.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shulgin, A. \& Shulgin, A. (1997). TiHKAL: The Continuation. Berkeley, California: Transform Press.

